A data-driven method for automated data superposition with applications in soft matter science

نویسندگان

چکیده

Abstract The superposition of data sets with internal parametric self-similarity is a longstanding and widespread technique for the analysis many types experimental across physical sciences. Typically, this performed manually, or recently through application one few automated algorithms. However, these methods are often heuristic in nature, prone to user bias via manual shifting parameterization, lack native framework handling uncertainty both resulting model superposed data. In work, we develop data-driven, nonparametric method superposing arbitrary coordinate transformations, which employs Gaussian process regression learn statistical models that describe data, then uses maximum posteriori estimation optimally superpose sets. This robust noise automatically produces estimates learned transformations. Moreover, it distinguished from black-box machine learning its interpretability—specifically, may itself be interrogated gain insight into system under study. We demonstrate salient features our four representative characterizing mechanics soft materials. every case, replicates results obtained using other approaches, but reduced addition estimates. enables standardized, treatment self-similar fields, producing interpretable data-driven inform applications such as materials classification, design, discovery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Data-driven Method for Crowd Simulation using a Holonification Model

In this paper, we present a data-driven method for crowd simulation with holonification model. With this extra module, the accuracy of simulation will increase and it generates more realistic behaviors of agents. First, we show how to use the concept of holon in crowd simulation and how effective it is. For this reason, we use simple rules for holonification. Using real-world data, we model the...

متن کامل

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

Dynamic data driven simulation with soft data

Dynamic data driven simulation dynamically assimilates observation data at runtime to improve the simulation results. Typically, the observations are “hard data” that are data collected from sensors. In this paper we consider dynamic data driven simulation with soft data, which are data coming from human reports. Compared with the quantified hard data, soft data are qualitative, fuzzy and subje...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

A Method for Target Setting with Share Data

Data Envelopment Analysis (DEA) is a mathematical programming technique for evaluatingthe relative efficiency of a set of Decision Making Units (DMUs) and can also be utilized forsetting target. Target setting is one of the important subjects since according to its resultsefficiency can be increased. An important issue to be currently discussed, is to set targetwhile considering share data. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Data-centric engineering

سال: 2023

ISSN: ['2632-6736']

DOI: https://doi.org/10.1017/dce.2023.3